Grad Student Desperate For Feedback Thrilled To Receive “K.” From Supervisor After Just 3 Months

Originally published on the satire science journal website DNAtured

Fourth year graduate student Virinder Singh was excited to find a new email from his supervisor in his inbox last Friday at 11:13 PM. Responding to a three-month-old request for feedback on a first draft, his supervisor had sent the following message:


Sent from my iPhone

“I was having a drink when I checked my phone and noticed a new email,” Singh says. “I immediately rushed back into the office to start getting back to work. It was then that I realized that Prof McNally had forgotten to include the attachment.”

Singh’s supervisor, Dr. Alistair McNally is known for his open door policy: students can come to him anytime with questions. The door to his office is always open. He, however, is never there.

Dr. Jena Li, a postdoc in Dr. McNally’s group, seemed disgruntled: “Good for Virinder, I hope he’s able to finish that paper. I’ve been waiting more than a year for a reply to an email asking for a meeting. I’m not even sure Dr. McNally knows I exist!”

When asked for a statement, Dr. McNally replied “K.”

Text bubble with "k". Meaning (okay), noun. used when things are really, in fact, not okay

Whoops! This Research Chemist Forgot To Add “But Not For Drugs” At The End Of Their Google Search And Now They’re On A Watch List

Originally published on the satire science journal website DNAtured

Upset Oh No GIF by Broad City
(From Giphy)

Research Chemist Dr. Jamie Dennis was shocked to discover that they were on the FBI watch list after googling the chemical structure of phenylalanine, without specifying that they did not intend to make meth.

“I’m usually so careful,” says Dr. Dennis. “One of the first lessons you learn in a chemistry undergrad course is to always, always, put “but not for drugs” in a google search. Especially if you’re looking at crystallization temperatures.”

This is not the first time a member of the chemistry department has been flagged. In 2015, a grad student was temporarily suspended bringing blue rock candy to an after-class happy hour.

Breaking Bad Pizza GIF
(From Giphy)

“For the last decade or so, we’ve had to be a lot more careful,” said FBI Agent Susan Pearson. “We’ve put tabs on all chemistry teachers, chemistry grad students, and chemistry researchers, just to be safe. With those paltry teaching salaries, everyone wants to be the new Walter White.”

Dr. Dennis says that they’ve learned their lesson, but after comparing their postdoc stipend to the money that could be made from a few illegal synthesis reactions, says they will now simply complete future searches in Incognito mode.

ninja turtles lol GIF
(From Giphy)

Alfabetober – Part 4

[Part 1]

[Part 2]

[Part 3]

Alfabetober – Part 3

[Part 1]

[Part 2]

Alfabetober – Part 2

Did you know that in Dutch, usually “ph” spelling is an “f”? For example, the Dutch word for “alphabet” is “alfabet.”

[You can find Part 1 here]

Alfabetober – Part 1

Every October, artists all over the world take on a challenge: make a piece of art (usually within a certain theme, using a specific media, and using a prompt list) every day for one month.

While I would not call myself an artist (though, art and science do have things in common), I took up a hobby I’d started a few months back: brushlettering or handlettering. One letter a day. And of course, I picked a science theme.

So here you go, part 1 of #Alfabetober, inspired by Carla Kamphuis (I realize that there are only 26 letters, while there are 31 days, there are some rest days).

Is there such a thing as a wunderkind?

A black and white drawing of Einstein
Einstein was widely regarded as a genius, but he did not have an unusually large brain, which I know because I researched it for a book once.

I recently watched the documentary The Inventor: Out For Blood In Silicon Valley. And boy, do I have some thoughts.

Theranos: Therapy meets Diagnostics

The documentary depicts on the rise and fall of Elizabeth Holmes, founder, and CEO of the biotech company Theranos. Briefly, here is what happened:

At the age of 19, she dropped out of university and founded a company on the idea of creating a diagnostic blood test that could test for over 200 different markers using only a few drops of blood, that could be taken with a prick of a fingertip. You know, the kind they use to measure your hemoglobin when you donate blood.

The aspiration was to give the power of therapeutics and diagnostics (Theranos = THERApy + diagNOSis) to the individual, making tests significantly cheaper, less scary (no needles!), and easier for the consumer to interpret. And earlier disease detection means earlier treatment and better survival!

She founded the company in 2003 and raised over $700 million from venture capitalists and private investors in the next decade. By 2013, the company was valued at $10 billion. In 2015, the validity of technology was questioned and Holmes, and Theranos with her, fell. Three years later, in 2018, Holmes and Ramesh “Sunny” Balwani, former Theranos Chief Operating Officer and President, were both charged with fraud and conspiracy. The Theranos saga had ended.

You can read more about Theranos and Holmes’ rise and fall on the interwebs, or watch one of the several documentaries made about the story. Rather than give you the details of Theranos, I’d like to talk more about my thoughts after watching this documentary – as a bioengineer who in 2013 was studying nanotechnology, working on a project involving “theranostics” (THERApeutics + diagNOSTICS, sound familiar?) and has more recently worked in a startup environment.

Nanotechnology and Microfluidics

From 2011 and 2013, right when Theranos was about to hit its peak, I was studying nanotechnology. The technology Theranos’ system was based on (or so they claimed) was exactly the same type of stuff I was learning about. To be able to do diagnostics on small samples, the liquid handling and detection techniques need to be scaled down, using principles of microfluidics (I was also learning about that).

I distinctly remember giving a presentation about microfluidic chips that could process blood in a way to split out the different components, i.e. centrifugation at a teeny tiny scale.

From what I remember, at that time most of this technology was still in the research phase: individual university research groups and some research institutions coming up with new approaches to handle small blood samples for diagnostic testing. Were they able to do 200s of tests on the samples? Not that I know. Was any of the technology commercially viable at the time? Not that I know. But then again, I was only studying this stuff and in no way an expert.

More importantly, I don’t remember hearing about Theranos. It clearly had not made enough of a buzz, scientifically, to reach across the pond.

When I was watching the documentary, it talked a little bit about the technology and my reaction was: “That won’t work. You can try to scale down one or two of these tests to work with small samples OR you can try to do a lot more tests with the same amount of sample. But not both at the same time, that’s just sounds idealistic!”

Clearly, it didn’t. (Obviously, otherwise, there would not have been as many articles written about this, or documentaries made.)

Blood samples are typically collected in tubes that look like this, a few mL at a time

Why we still love a genius

Part of the reason people bought into the Theranos story, is because it was enticing. This young women, who wore turtlenecks (Steve Jobs much?) and felt like she had to lower her voice to be taken more seriously, Silicon Valley just loved her. Part of being part of startup culture is being good at selling a story – whether it’s factual or not, realistic or not, is beside the point.

Another reason Theranos was successful at first and able to raise so much money was that Holmes was extremely well connected. She was charismatic. She was able to surround herself with big names, from the world of investment, military, law and even politics.

Here’s the thing, I get it. Seeing images of this young woman, who clearly is motivated by making the world a better place, who clearly made an effort to hire an inclusive and diverse workforce, who was able to found a company at such a young age, after dropping out of college no less, I would have admired her too! Making it “big” as a woman in the male-dominated tech world is not an easy feat and she seemed to have made it happen (at the time).

But here’s another thought: why do we so want to love the story of a “genius”? We love hearing about wunderkinder and how they become the youngest to do this or the first to do that. Is it because somehow we think that we too can be a genius. That we can have our own great amazing story. But most of us won’t (and that’s okay).

Maybe we should stop glorifying individuals in science, research, and tech, because especially nowadays, science doesn’t happen in isolation. Progress happens in small steps with massive groups of people collaborating to make it happen.

(Yet, we still have Nobel Prizes and love celebrating greatness.)

Why we love to see someone fall

We love to admire an individual making it happen against all odds, working so hard so they can make it, despite the system working against them. But similarly, we love seeing someone on the top fall. Perhaps we like seeing them fail so we can feel better about ourselves not “succeeding” as they did. And then didn’t

What I disliked about “The Inventor,” is that it made it seem like it was all Holmes’ fault. They spoke to some of the men that invested in her company, that believed in her, and they all tried to shift the blame to her, like she had “seduced” them into supporting her too idealistic cause.

Holmes’ surrounded herself with Yes-men. Surround yourself with people who keep telling you that you’re great, and you will start thinking you’re great. Just like being told over and over again that your not good enough for something will get to your head.

The documentary, with overly dramatic animations of blood getting into a microcentrifuge system and a dice rolling, makes Holmes look evil. And the person around her, who enabled her, as victims of her charm. And the same type of men then went ahead to explain how she failed.

Of course, Holmes’ did play a big part in this story, but she’s not the only one to blame. It’s the system that gives people the privilege of better networks and connections to succeed without really having to try. It’s the culture of Silicon Valley that celebrates taking risks when they are completely ridiculous to take. It’s the startup mentality of “Fake it till you make it,” forgetting that quite often they won’t actually make it. It’s all of us, that love hearing about wunderkinder and geniuses and celebrate the individual instead of the collective for their achievements.

The end

How to I end this word vomit about how perhaps glorification of geniuses is perhaps not the healthiest thing?

Well, people do have good ideas. And sometimes the high-risk, high-reward world of tech and startups is the way to make these good ideas happen. And sometimes those ideas fail and we should just admit to ourselves why we enjoy watching that happen.

To quote the YouTuber MedLife Crisis (paraphrased): We shouldn’t hype medicine. Thank you vfor coming to my MedTalk.

Teeny Tiny Dino (or not)

Picture of 3 wooden toy dinosaurs

Finally, after months of not really writing blog-related content, I leaf through the pile of articles from Science Magazine I had ripped out to find inspiration. On the very top of the pile, I find a short piece on the recently (I’m talking March 2020) discovered fossil of Oculudentavis khaungraae – the tiniest dinosaur. Or is it?

Is it is a bird? Is it a lizard?

While doing research, I quickly discover that the original paper was redacted in July – that’s what I get for getting behind on blogging I guess.

In short, the paper published in March describes the discovery of a tiny head (7 mm long) embedded in amber, which was categorised as a bird-like dinosaur making it the tiniest dinosaur ever found. This creature would probably have been about the size of the smallest living bird, the bee hummingbird. The researchers noted that the creature had large eye sockets (Oculudentavis means “eye-tooth bird” so they would have been big on eyes, and toothy), like modern lizards.

Finding the tiniest dinosaur would have been pretty cool. But in June the paper was taken down – apparently, new evidence had come to light showing that the fossil might have not been a dinosaur, and therefore not some type of prehistoric bird, but an unusual lizard.

Wait, were dinosaurs not giant lizards?

Cartoon image with palm trees, various dinosaurs, birds and lizards.
Do not comment on the scientific accuracy of this image please.

“Dinosaur” (Greek deinos ‘terrible’ + sauros ‘lizard’)

Despite the etymology of the word dinosaur (“terrible lizard”), dinosaurs are actually more related to birds than they are to modern-day lizards. While the word “dinosaur” does get used as an umbrella term to describe prehistoric reptile-like creatures and depicted as such in children’s books and blockbuster movies, dinosaurs, including the feathered type that survived the mass extinction of 65 million BCE and eventually evolved into what we now know as birds, and reptiles are different things.

Dinosaurs (including birds) do have a common ancestor with reptiles: crocodiles, lizards, snakes, and such: this common ancestor is the archosaur. Crocodiles and other reptiles branched off in the evolutionary tree.

If you find an ancient prehistoric reptile-like fossil, you can tell whether you are looking at a dinosaur or a prehistoric reptile by looking at the hips – for as the ancient saying goes, hips don’t lie. Reptiles have a sprawling stance: their legs connect to the hips on the sides. Dinosaurs however have an upright stance: their legs connect to their hips straight under the body, just like birds – which makes sense because birds are dinosaurs!

I should add that the exact classification of dinosaurs and its subgroups are not entirely agreed on. So if you are a bit confused, you’re not alone. And if you, like all of the Jurassic Park/World franchise, want to call awesome, terrible, sometimes gigantic, extinct, reptile-like creatures by the name Dinosaur, I won’t stop you.

Close up of bird claw in the snow
In the first scenes of Jurassic World, we see a dramatic dinosaur foot stomping down but wait it, was a bird all along!

The teeniest dinosaur, but not really

For the fossil found in amber, however, the new fossil data (not yet published) apparently proves that it is not the teeniest dinosaur. Instead, it should be classified as a lizard, albeit an unusual one.

I could end there, but I want to mention one more controversy that I found while looking into this tiny dinosaur debacle, which brings up some of the ethics of fossil mining. These fossils were found in amber mines in Myanmar, mines that are situated in a military conflict zone and riddled with landmines. In addition, these amber mines mostly consist of long tunnels that are dangerous for the miners to work in, and many of the miners work under horrific and exploitatory conditions. You can read more about these ethical concerns here:


Inspiration for this piece in Science:

Press release from Nature about the redaction:

More about dinosaurs vs. birds vs. lizards:

Information on the ethics of amber fossils:

I’ve been gone, but that does not mean I haven’t been writing! I’ve been testing out some more comedic writing styles, which you can find published (!) on DNAtured (for science-related topics) and The Foreigner Blog (for non-related topics). You can read the here:

Hoezo? Ouzo!

“Hoezo” is Dutch word meaning “How so?” or “Why?”, and also the name of a popular science quiz that was on TV during my teenage years. From which I distinctly remember that we find blue foods generally yucky looking because a lot of molds are blue and that we think mirror pictures of ourselves look better because that’s what we’re used to seeing (as opposed to other people thinking non-mirrored pictures are more flattering).

The word also kind of sounds like “Ouzo” – an anise-based liquor from Greece that has the cool property of being clear until you add water, aptly named “the Ouzo effect

The Ouzo Effect

For the ouzo effect to occur we need three components: an oil, a water, and an alcohol.

The alcohol (in this case ethanol) and anise oil (also known as anethole) can be mixed. Same for ethanol and water. But anethole and water don’t mix very well: oils are generally hydrophobic.

When you add water to an anise-based alcoholic drink, such as Ouzo but other examples include Pastis and Absinthe, the liquid turns from clear to milky. By mixing these three liquids together, two of which don’t mix well, you create an emulsion: little oil micro-droplets suspended in the liquid.

Usually, oil-in-water emulsions are highly unstable, but in the case of this delicious drink* the emulsion is highly stable, making it of special interest for colloid researchers to study things like nano-droplet and micro-emulsion formations.

Or to make art:

*IMO, I know not everyone enjoys anise drinks.

Video created by:

  • Oscar Enriquez, Universidad Carlos III de Madrid
  • Daniel Robles, Universidad Nacional Autónoma de México
  • Pablo Peñas-López, Universidad Carlos III de Madrid
  • Javier Rodríguez-Rodríguez, Universidad Carlos III de Madrid


More details on the Ouzo effect:

A bug(bot)’s life

Throughout the history of technological development, humans have turned to nature for inspiration. From lotus leaves inspiring umbrellas over pretty much everything Leonardo Da Vinci invented, from annoying plants that would stick to your clothes resulting in velcro to gecko-skin-glue; when humans want to invent something new they turn to nature because quite often nature has been doing it for millennia.

Including flight.

Some of the most efficient flying creatures in nature are flying insects. For the limited amount of neurons they have, they are incredibly competent in terms of locomotion, navigation, and maneuverability. For a roboticist working in microscale flight, creating an autonomous flying device as small, light, and versable as an insect is the dream.

A robot scientist dreaming about a winged robot


Therefore, it is not a surprise that researchers study insects to improve their mini flying robots.

One example is a small quadcopter drone developed by Nakata et al., that inspired its collision avoidance system on the southern house mosquito. The researchers hypothesized that mosquitos actively sense sound and airflow specifically changes in the air patterns created by their wings as they move close to an obstacle.

Based on this system, the researchers designed a small drone that would sense an obstacle coming close, and automatically course-correct using this low-power sensing method.

Photo of a drone against the sunset
A drone, staring into the sunset, wishing it was smaller and more maneuverable…

Robotics + entomology = robontomology?

Creating flying robot-insects is not the only reason roboticists are interested in insects. The intersection between robotics and entomology can also be useful to better understand insect behavior.

For example, in an effort to answer the more basic question of how flying insects navigate in their environment, traditional methods proved to be quite limiting. Tethering an insect predictably interferes with flight, as does confining the insect to a room where tracking cameras can monitor their flight. In comes robotics: an open cage mount with an autonomous tracking camera (reactive controller), giving the flying insects free range to zoom, while being able to track the complex flying patterns of moths, fruit flies and mosquitos flying up to 3 m/s.

In other research, robot-insect hybrids can help understand insect brain function. By linking an insect brain to a small mechanical robot, the sensing response of different insects can be closely studied. For example, a Mantis-bot has been used to unravel the mechanism of mantis’ visual sensing and subsequent motor response.

The educational project BackYard Brains, which uses fun DIY experiments to explore the function of neurons and brains, also uses this robinsect approach to show how electrical impulses can control cockroach movement.

Video shows the BackYard Brains tool for steering a live (!) cockroach.

Backpack Beetles

Okay, last one, researchers made little camera backpacks for beetles because… well, it’s just cute as hell!

Picture of a beetle with a camera on its back on a bit of twig.
A Pinacate beetle explores the UW campus with a camera on its back. (Courtesy of Mark Stone/University of Washington)

Okay, no, rather than having a insect-sized robot walking around and taking pictures, the researchers made a considerably lighter camera-backpack that beetles could walk around and take pictures with! A big bottleneck for insect-sized-robotics is that these gadgets require power, and batteries are kind of heavy. So by reducing the gadget to a steerable arm with a camera on it on the back of a beetle, rather than making a whole robot that needs to move around and maneuver, the researchers managed to cut down signficiantly on the weight.

Also, it’s cute as hell!

Thanks for the robot-insect update, Valerie. But what about the Killer Bees?

For the Black Mirror fans, not to worry, no-one is making swarms of bees (yet).

Sources and original research papers linked throughtout the text.