I have not made it a big secret that I think penguins are pretty cool. (Does that count as a pun? “Cool,” because they live on the South Pole, get it? Get it?)
So to end this crazy year in style, I want to share some of the news and novel science related to our favorite tuxedo-wearing friends. In style, because tuxedoes are fancy! (Get it?)
Sidenote: While researching “Best Penguin Moments of 2020” I learned that the Pittsburg Penguins are a hockey team (and not a lovely group of penguins in the Pittsburg zoo) and that there are many top Penguin book lists circulating on the internet. Not quite what I was looking for!
1. Penguin picture wins Ocean Photograph Award 2020
Starting things off with some cuteness, a picture of two penguins that had apparently lost their penguin partners and were seemingly comforting each other, won the Community Choice Award at Oceanographic magazine’s Ocean Photograph Awards 2020.
That’s all you need to know. Now wallow in cuteness.
2. Penguin Birthday Party
Wellington, a Rockhopper penguin in Chicago’s Shedd Aquarium who gained viral fame earlier this year thanks to a video of him hanging out with a Beluga whale, celebrated his 33rd birthday this year, with a day of fishy deliciousness.
3. TIL, Penguins get vaccinated too!
Birds get the flu too! And more importantly, birds can get vaccinated against the bird flu!
Let this be a reminder that if you are able too, it is worth getting vaccinated against the flu, and when if becomes available to you, against SARS-CoV-2 as well!
4. Penguins make the best of a bad situation
In a tiny bit of silver lining to climate change, recent research showed that Adelie penguins may actually thrive in warmer years. In years where there is less ice, Adelies spend more time swimming, saving energy, and covering more foraging ground. The researchers predict the population is likely to grow as the ice caps decline.
5. Penguins suffer in a bad situation
On the flip side of the story above, warming waters near Antarctica may be the reason for the biggest king penguin colony declining in size, having lost 900,000 birds over the past few decades. If anything, changing climate is causing species to adapt, and some will be okay, while others will not.
6. Penguins celebrate the holidays too!
Okay they don’t, but earlier this year we 3D printed some penguins, and they have now found their home!
I hope you all have a wonderful New Year, full of waddling and warmth and tasty fish!
Originally published on the satire science journal website DNAtured
Fourth year graduate student Virinder Singh was excited to find a new email from his supervisor in his inbox last Friday at 11:13 PM. Responding to a three-month-old request for feedback on a first draft, his supervisor had sent the following message:
K.
Sent from my iPhone
“I was having a drink when I checked my phone and noticed a new email,” Singh says. “I immediately rushed back into the office to start getting back to work. It was then that I realized that Prof McNally had forgotten to include the attachment.”
Singh’s supervisor, Dr. Alistair McNally is known for his open door policy: students can come to him anytime with questions. The door to his office is always open. He, however, is never there.
Dr. Jena Li, a postdoc in Dr. McNally’s group, seemed disgruntled: “Good for Virinder, I hope he’s able to finish that paper. I’ve been waiting more than a year for a reply to an email asking for a meeting. I’m not even sure Dr. McNally knows I exist!”
When asked for a statement, Dr. McNally replied “K.”
Originally published on the satire science journal website DNAtured
Research Chemist Dr. Jamie Dennis was shocked to discover that they were on the FBI watch list after googling the chemical structure of phenylalanine, without specifying that they did not intend to make meth.
“I’m usually so careful,” says Dr. Dennis. “One of the first lessons you learn in a chemistry undergrad course is to always, always, put “but not for drugs” in a google search. Especially if you’re looking at crystallization temperatures.”
This is not the first time a member of the chemistry department has been flagged. In 2015, a grad student was temporarily suspended bringing blue rock candy to an after-class happy hour.
“For the last decade or so, we’ve had to be a lot more careful,” said FBI Agent Susan Pearson. “We’ve put tabs on all chemistry teachers, chemistry grad students, and chemistry researchers, just to be safe. With those paltry teaching salaries, everyone wants to be the new Walter White.”
Dr. Dennis says that they’ve learned their lesson, but after comparing their postdoc stipend to the money that could be made from a few illegal synthesis reactions, says they will now simply complete future searches in Incognito mode.
Every October, artists all over the world take on a challenge: make a piece of art (usually within a certain theme, using a specific media, and using a prompt list) every day for one month.
While I would not call myself an artist (though, art and science do have things in common), I took up a hobby I’d started a few months back: brushlettering or handlettering. One letter a day. And of course, I picked a science theme.
So here you go, part 1 of #Alfabetober, inspired by Carla Kamphuis (I realize that there are only 26 letters, while there are 31 days, there are some rest days).
The documentary depicts on the rise and fall of Elizabeth Holmes, founder, and CEO of the biotech company Theranos. Briefly, here is what happened:
At the age of 19, she dropped out of university and founded a company on the idea of creating a diagnostic blood test that could test for over 200 different markers using only a few drops of blood, that could be taken with a prick of a fingertip. You know, the kind they use to measure your hemoglobin when you donate blood.
The aspiration was to give the power of therapeutics and diagnostics (Theranos = THERApy + diagNOSis) to the individual, making tests significantly cheaper, less scary (no needles!), and easier for the consumer to interpret. And earlier disease detection means earlier treatment and better survival!
She founded the company in 2003 and raised over $700 million from venture capitalists and private investors in the next decade. By 2013, the company was valued at $10 billion. In 2015, the validity of technology was questioned and Holmes, and Theranos with her, fell. Three years later, in 2018, Holmes and Ramesh “Sunny” Balwani, former Theranos Chief Operating Officer and President, were both charged with fraud and conspiracy. The Theranos saga had ended.
You can read more about Theranos and Holmes’ rise and fall on the interwebs, or watch one of the several documentaries made about the story. Rather than give you the details of Theranos, I’d like to talk more about my thoughts after watching this documentary – as a bioengineer who in 2013 was studying nanotechnology, working on a project involving “theranostics” (THERApeutics + diagNOSTICS, sound familiar?) and has more recently worked in a startup environment.
Nanotechnology and Microfluidics
From 2011 and 2013, right when Theranos was about to hit its peak, I was studying nanotechnology. The technology Theranos’ system was based on (or so they claimed) was exactly the same type of stuff I was learning about. To be able to do diagnostics on small samples, the liquid handling and detection techniques need to be scaled down, using principles of microfluidics (I was also learning about that).
I distinctly remember giving a presentation about microfluidic chips that could process blood in a way to split out the different components, i.e. centrifugation at a teeny tiny scale.
From what I remember, at that time most of this technology was still in the research phase: individual university research groups and some research institutions coming up with new approaches to handle small blood samples for diagnostic testing. Were they able to do 200s of tests on the samples? Not that I know. Was any of the technology commercially viable at the time? Not that I know. But then again, I was only studying this stuff and in no way an expert.
More importantly, I don’t remember hearing about Theranos. It clearly had not made enough of a buzz, scientifically, to reach across the pond.
When I was watching the documentary, it talked a little bit about the technology and my reaction was: “That won’t work. You can try to scale down one or two of these tests to work with small samples OR you can try to do a lot more tests with the same amount of sample. But not both at the same time, that’s just sounds idealistic!”
Clearly, it didn’t. (Obviously, otherwise, there would not have been as many articles written about this, or documentaries made.)
Why we still love a genius
Part of the reason people bought into the Theranos story, is because it was enticing. This young women, who wore turtlenecks (Steve Jobs much?) and felt like she had to lower her voice to be taken more seriously, Silicon Valley just loved her. Part of being part of startup culture is being good at selling a story – whether it’s factual or not, realistic or not, is beside the point.
Another reason Theranos was successful at first and able to raise so much money was that Holmes was extremely well connected. She was charismatic. She was able to surround herself with big names, from the world of investment, military, law and even politics.
Here’s the thing, I get it. Seeing images of this young woman, who clearly is motivated by making the world a better place, who clearly made an effort to hire an inclusive and diverse workforce, who was able to found a company at such a young age, after dropping out of college no less, I would have admired her too! Making it “big” as a woman in the male-dominated tech world is not an easy feat and she seemed to have made it happen (at the time).
But here’s another thought: why do we so want to love the story of a “genius”? We love hearing about wunderkinder and how they become the youngest to do this or the first to do that. Is it because somehow we think that we too can be a genius. That we can have our own great amazing story. But most of us won’t (and that’s okay).
Maybe we should stop glorifying individuals in science, research, and tech, because especially nowadays, science doesn’t happen in isolation. Progress happens in small steps with massive groups of people collaborating to make it happen.
(Yet, we still have Nobel Prizes and love celebrating greatness.)
Why we love to see someone fall
We love to admire an individual making it happen against all odds, working so hard so they can make it, despite the system working against them. But similarly, we love seeing someone on the top fall. Perhaps we like seeing them fail so we can feel better about ourselves not “succeeding” as they did. And then didn’t
What I disliked about “The Inventor,” is that it made it seem like it was all Holmes’ fault. They spoke to some of the men that invested in her company, that believed in her, and they all tried to shift the blame to her, like she had “seduced” them into supporting her too idealistic cause.
Holmes’ surrounded herself with Yes-men. Surround yourself with people who keep telling you that you’re great, and you will start thinking you’re great. Just like being told over and over again that your not good enough for something will get to your head.
The documentary, with overly dramatic animations of blood getting into a microcentrifuge system and a dice rolling, makes Holmes look evil. And the person around her, who enabled her, as victims of her charm. And the same type of men then went ahead to explain how she failed.
Of course, Holmes’ did play a big part in this story, but she’s not the only one to blame. It’s the system that gives people the privilege of better networks and connections to succeed without really having to try. It’s the culture of Silicon Valley that celebrates taking risks when they are completely ridiculous to take. It’s the startup mentality of “Fake it till you make it,” forgetting that quite often they won’t actually make it. It’s all of us, that love hearing about wunderkinder and geniuses and celebrate the individual instead of the collective for their achievements.
The end
How to I end this word vomit about how perhaps glorification of geniuses is perhaps not the healthiest thing?
Well, people do have good ideas. And sometimes the high-risk, high-reward world of tech and startups is the way to make these good ideas happen. And sometimes those ideas fail and we should just admit to ourselves why we enjoy watching that happen.
To quote the YouTuber MedLife Crisis (paraphrased): We shouldn’t hype medicine. Thank you vfor coming to my MedTalk.
Finally, after months of not really writing blog-related content, I leaf through the pile of articles from Science Magazine I had ripped out to find inspiration. On the very top of the pile, I find a short piece on the recently (I’m talking March 2020) discovered fossil of Oculudentavis khaungraae – the tiniest dinosaur. Or is it?
Is it is a bird? Is it a lizard?
While doing research, I quickly discover that the original paper was redacted in July – that’s what I get for getting behind on blogging I guess.
In short, the paper published in March describes the discovery of a tiny head (7 mm long) embedded in amber, which was categorised as a bird-like dinosaur making it the tiniest dinosaur ever found. This creature would probably have been about the size of the smallest living bird, the bee hummingbird. The researchers noted that the creature had large eye sockets (Oculudentavis means “eye-tooth bird” so they would have been big on eyes, and toothy), like modern lizards.
Finding the tiniest dinosaur would have been pretty cool. But in June the paper was taken down – apparently, new evidence had come to light showing that the fossil might have not been a dinosaur, and therefore not some type of prehistoric bird, but an unusual lizard.
Despite the etymology of the word dinosaur (“terrible lizard”), dinosaurs are actually more related to birds than they are to modern-day lizards. While the word “dinosaur” does get used as an umbrella term to describe prehistoric reptile-like creatures and depicted as such in children’s books and blockbuster movies, dinosaurs, including the feathered type that survived the mass extinction of 65 million BCE and eventually evolved into what we now know as birds, and reptiles are different things.
Dinosaurs (including birds) do have a common ancestor with reptiles: crocodiles, lizards, snakes, and such: this common ancestor is the archosaur. Crocodiles and other reptiles branched off in the evolutionary tree.
If you find an ancient prehistoric reptile-like fossil, you can tell whether you are looking at a dinosaur or a prehistoric reptile by looking at the hips – for as the ancient saying goes, hips don’t lie. Reptiles have a sprawling stance: their legs connect to the hips on the sides. Dinosaurs however have an upright stance: their legs connect to their hips straight under the body, just like birds – which makes sense because birds are dinosaurs!
I should add that the exact classification of dinosaurs and its subgroups are not entirely agreed on. So if you are a bit confused, you’re not alone. And if you, like all of the Jurassic Park/World franchise, want to call awesome, terrible, sometimes gigantic, extinct, reptile-like creatures by the name Dinosaur, I won’t stop you.
The teeniest dinosaur, but not really
For the fossil found in amber, however, the new fossil data (not yet published) apparently proves that it is not the teeniest dinosaur. Instead, it should be classified as a lizard, albeit an unusual one.
I could end there, but I want to mention one more controversy that I found while looking into this tiny dinosaur debacle, which brings up some of the ethics of fossil mining. These fossils were found in amber mines in Myanmar, mines that are situated in a military conflict zone and riddled with landmines. In addition, these amber mines mostly consist of long tunnels that are dangerous for the miners to work in, and many of the miners work under horrific and exploitatory conditions. You can read more about these ethical concerns here: http://markwitton-com.blogspot.com/2020/03/the-ugly-truth-behind-oculudentavis.html.
I’ve been gone, but that does not mean I haven’t been writing! I’ve been testing out some more comedic writing styles, which you can find published (!) on DNAtured (for science-related topics) and The Foreigner Blog (for non-related topics). You can read the here:
“Hoezo” is Dutch word meaning “How so?” or “Why?”, and also the name of a popular science quiz that was on TV during my teenage years. From which I distinctly remember that we find blue foods generally yucky looking because a lot of molds are blue and that we think mirror pictures of ourselves look better because that’s what we’re used to seeing (as opposed to other people thinking non-mirrored pictures are more flattering).
The word also kind of sounds like “Ouzo” – an anise-based liquor from Greece that has the cool property of being clear until you add water, aptly named “the Ouzo effect“
The Ouzo Effect
For the ouzo effect to occur we need three components: an oil, a water, and an alcohol.
The alcohol (in this case ethanol) and anise oil (also known as anethole) can be mixed. Same for ethanol and water. But anethole and water don’t mix very well: oils are generally hydrophobic.
When you add water to an anise-based alcoholic drink, such as Ouzo but other examples include Pastis and Absinthe, the liquid turns from clear to milky. By mixing these three liquids together, two of which don’t mix well, you create an emulsion: little oil micro-droplets suspended in the liquid.
Usually, oil-in-water emulsions are highly unstable, but in the case of this delicious drink* the emulsion is highly stable, making it of special interest for colloid researchers to study things like nano-droplet and micro-emulsion formations.